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Overview
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Timeline
• Project start date: Feb 1, 2017
• Project end date: Jan 31, 2020
• Percent complete: 35%

Budget
• Total project funding

– $630,493
– DOE share: $567,301
– Cost share: $63,192

• Funding received in FY 2017
– $198,252

• Funding for FY 2018
– $180,642

Barriers
• Co-optimization of fuels and 

engines
• Lack of fundamental 

knowledge of advanced 
engine combustion regimes

• Lack of effective engine 
controls

Partners
• Sandia National Laboratory
• Argonne National Laboratory



Project Objectives
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Experimental Goal: 
• Acquire repeatable fuel-air mixing and combustion data using a constant 

pressure flow rig (CPFR)
• Implement multiple time-resolved optical diagnostics techniques 

simultaneously at diesel operating temperatures and pressures.
• Acquire experimental measurements to determine combustion properties 

of biofuels and blends 
• Facilitate leaner lifted flame combustion in ACI engines. 

Modeling Goal:
• Develop correlations between fuel properties and combustion properties
• Eventually develop a neural network based fuel property prediction tool 

for ACI engines. 

Address Sub-topic Area 1: Fuel Characterization and Fuel Property Prediction



Project Approach
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• Experiment Setup and Measurement Processing Development: Initial 
diagnostic integration into the existing constant pressure flow rig (CFR) as 
well as development of the data processing techniques will be 
completed. Additionally, assessment of potential modeling approaches 
(functional relations versus neural network) will be conducted. 

• Single component fuel testing and model development: Single 
component fuel experiments and model development based on initial 
survey will be completed. Specific experimental conditions (and fuels) will 
be chosen based on discussions with DOE National Lab partner.

• Multi-component fuel testing and blending rule development: 
Experiments and blending models for multicomponent fuels will be 
completed. Finally, the tools developed will be used to identify a 
preliminary candidate fuel optimized for use in ACI engines.



Milestones
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2018 Milestone Type Description
Initial Model Structure 

Developed Technical Based on fuel properties and combustion properties and 
initial model structure will be completed

Completed Single Fuel Testing Technical Spray tests of single component fuels will be completed to 
support model development

Petroleum based fuel models 
created Technical Models for single component petroleum based fuels will be 

created

Single Fuel Models Completed Go/No Go Single component combustion property models (petroleum 
and bio based) completed with acceptable accuracy

2017 Milestone Type Description

Optical Setup Complete Technical
The existing spray chamber will be augmented with the 
additional diagnostics, chemiluminescence and two-color 
pyrometry, and the data capture synchronized.

Fuel Property Combustion 
Indicators Identified

Technical
Identified potential fuel properties to test for relation to 
combustion properties. This includes supercritical fuel 
property effects.

Image Processing Codes 
Complete

Technical
Completed development of image processing codes to 
provide synchronized spatial and temporal 
measurements.

Modelling approach decision Go/No Go
Decision between functional model and neural network 
will be made at end of Budget Period 1. This will guide 
model development in remainder of project.



Project Accomplishments
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• Obtained baseline measurements in Constant Pressure Flow Rig for 
a baseline conditions using Rainbow Schlieren Deflectometry (RSD) 
Technique, and developed data processing techniques. 

• Developed a two-color pyrometry system, and associated 
calibration and image processing techniques

• Tested time-resolved OH* chemiluminescence system, and 
developed imaging processing techniques

• Integrated the three diagnostics systems for simultaneous use in 
the constant pressure flow rig (CPFR)

• Evaluated functional model and neural network model approaches 
and decided to pursue neutral network model approach.

• Developed a trial neural network model for liquid penetration 
length using ECN experimental dataset.



Differing Spray Regimes
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Conventional, Subcritical Processes Supercritical Processes

Oefelein,  et al, AEC Update 2012



Constant Pressure Flow Rig (CPFR)
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• Continuous flow of 
compressed 
preheated air 

• Bosch CRIN3-18 
Injector, axial 100 
µm orifice 

• 12 injections per 
minute
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Lean Lifted Flame Combustion



Optical Diagnostics

Diagnostics applied to lean lifted flame showing regions of
imaging for Rainbow Schlieren Deflectometry or RSD (blue),
OH* (Green), and two-color pyrometer (red).



Rainbow Schlieren Deflectometry (RSD)
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• High-intensity, pulsed LED white light source, rectangular 
source aperture, collimating and decollimating lenses

• Rainbow filter, high-speed camera

Pulsed Broadband LED



Rainbow Schlieren Deflectometry
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Rainbow filter serves as an optical ruler to measure ray displacement
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Test Conditions
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– n-heptane
– Fuel supply pressure of 1000 bar
– Chamber air temperature of 825 K (Tf,cr = 540 K)
– Chamber pressure of 28 bar (Pf,cr = 27.4 bar)
– Schlieren field of view is about 60 mm
– Imaging Setup (Phantom v611)

• Exposure time: 4 us
• Framing rate: 40 kHz
• Spatial resolution 100 um/px



Sample High-speed Video Imaging
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These results are captured with small backlight on injector 
and liquid region.

780 K, 33 bar ambient conditions.

Injection duration (visual) = 2.6 ms
Main Ignition delay = 1.9 ms






RSD Video
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Injection Duration (from video) = 4.75 ms
1st Stage ignition Delay = 0.65 ms, Main Ignition Delay = 1.0 ms






Schlieren Analysis
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Instantaneous radial deflection angle at a transverse location ‘x’ is given as

𝜀𝜀 𝑥𝑥, 𝑡𝑡 = ∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝑥𝑥, 𝑦𝑦, 𝑡𝑡 𝑑𝑑𝑑𝑑
Where 𝛿𝛿 = ( 𝑛𝑛

𝑛𝑛𝑜𝑜
− 1) is the normalized refractive index difference, n is local 

refractive index, and no is ambient refractive index.
For small deflection angles, 𝜀𝜀 𝑥𝑥, 𝑡𝑡 =d(x,t)/f
Here transverse displacement d(x,t) is related to hue or color



Rainbow Filter Calibration
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• Deflected rays pass through different colors on the filter. 
• Filter serves as a ruler to measure the deflection of light rays, which 

is related to density or equivalence ratio.



Rainbow Schlieren Images

19/37



20/37

Time Evolution
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Radial Profiles



Integrated Diagnostics Setup

Additional Diagnostics include:
Two-color soot pyrometry
OH* Chemiluminescence

All three diagnostics have been integrated and synchronized by 
imaging a simple methane Bunsen burner flame.

The integrated systems is now ready for use with CFPR.
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Integrated Diagnostics Setup
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– The Pyrometer and Chemiluminescence camera are set at 
angles on either side of the Schlieren light source

Pyrometry
Camera Chemiluminescence

Camera

Schlieren
Camera



Two-Color Pyrometry
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Radiation from the flame passes through a 50-50 beam splitter, a series of mirrors, 
and bandpass filters to yield an image on the camera sensor at each wavelength

50:50 
Bifurcation

90⁰ Turning 
Mirrors

650nm 
Bandpass

550nm 
Bandpass



– Planck’s Law: 𝐸𝐸𝑏𝑏,𝜆𝜆 = 𝐶𝐶1

𝜆𝜆5[𝑒𝑒 �𝐶𝐶2
𝜆𝜆𝜆𝜆 −1]

– Emissivity for a non-blackbody: 
𝐸𝐸𝜆𝜆 𝑇𝑇 = 𝜖𝜖𝜆𝜆𝐸𝐸𝑏𝑏,𝜆𝜆 𝑇𝑇 = 𝐸𝐸𝑏𝑏,𝜆𝜆 𝑇𝑇𝑎𝑎

– Empirical relationship for emissivity[1]:
𝜖𝜖𝜆𝜆 = 1 − 𝑒𝑒 ⁄−𝐾𝐾𝐾𝐾 𝜆𝜆𝛼𝛼

– Combining:

1 −
𝑒𝑒( ⁄𝐶𝐶2 𝜆𝜆1𝑇𝑇) − 1
𝑒𝑒( ⁄𝐶𝐶2 𝜆𝜆1𝑇𝑇𝑎𝑎1) − 1

𝜆𝜆1
𝛼𝛼

= 1 −
𝑒𝑒( ⁄𝐶𝐶2 𝜆𝜆2𝑇𝑇) − 1
𝑒𝑒( ⁄𝐶𝐶2 𝜆𝜆2𝑇𝑇𝑎𝑎2) − 1

𝜆𝜆2
𝛼𝛼

• Ta1 and Ta2 are measured, solve for T

– Calibrate camera signal to Ta with a 
known blackbody

– Use exposure constant to utilize full 
dynamics of the camera: 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 = �𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒
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Two-Color Pyrometry Principles

1800 2000 2200 2400 2600 2800

Blackbody Temperature (K)

0

50

100

150

200

250

300

C
am

er
a 

In
te

ns
ity

Camera Intensity vs Temperature at 1

2us

3us

4us

10us

15us

1800 2000 2200 2400 2600 2800

Blackbody Temperature (K)

0

50

100

150

200

250

Ef
fe

ct
iv

e 
C

am
er

a 
In

te
ns

ity

Adjusted for Exposure Time - 1

2us

3us

4us

10us

15us

true

[1] Hottel & Broughton



OH* Chemiluminescence

26/32

315nm Single-Band 
Band Pass Filter

Invisible Vision UVi
Camera Intensifier

Photron
FASTCAM SA5



OH* Chemiluminescence
Steady CH4 Flame Test 
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- 100 FPS
- Gate Time:100 μs
- Gain: 50%
- Cropped Resolution: 297x301
- Recorded Resolution: 1024x1024

Normalized Intensity of OH Chemiluminescence
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Synchronized Image Acquisition
Steady CH4 Flame Test 
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Two-Color Pyrometry Rainbow Schlieren Deflectometry OH* Chemiluminescence

Flame Area
Soot Area (Pyrometer)
OH* Area (Chemi)



Model Development Progress
We quickly decided to pursue a neural network type model. 
Ultimate goal will be to develop model of the general form: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

To that end we have done initial exploration and proof of 
concept by developing a neural network that can replicate the 
predictions of the Siebers Liquid Length Model. 

This network has been developed with the full set of Engine 
Combustion Network data that included liquid length.

29/32



Neural Network Structure
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Terminology
– Input Layer: Each node represents raw data for an independent variable
– Hidden Layers: Node values are calculated based on the previous layer
– Output Layer: Nodes in the output layer represent the dependent variables
– Connections and Weights: Nodes are connected to each node in the subsequent layer via 

an activation function with a weight (W) and offset (G)
– Activation Function: The activation function for a connection defines the response of the 

second node in the connection to a change in the first node in the connection

𝑑𝑑 =
2

1 + 𝑒𝑒−2(𝐺𝐺+𝑊𝑊1𝑎𝑎+𝑊𝑊2𝑏𝑏+𝑊𝑊3𝑐𝑐) − 1

𝑎𝑎
𝑑𝑑

𝑏𝑏

𝑐𝑐

Equation for each connection:



Neural Network Implementation
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– Matlab neural network toolbox allows fast training with flexible network 
structure

– Proof-of-concept tests were conducted using ECN data to predict liquid length 
from bulk density, bulk temperature, fuel density, and nozzle diameter

– Unnecessarily complex network structures were found to produce unwanted 
behavior between data-dense areas in graphs

– Through trial and error, a network structure of two hidden layers with six nodes 
each was found to work best during this initial exploration.



Neural Network Training
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– Experimental variation in data can cause non-physical behavior 
in the network, known as overfitting

– 15% of data is set aside for validation, and 15% for testing
– The network is trained on the remaining 70% of the dataset, 

and stops when it no longer improves for the validation data
– The test data is used to check for excessive error



Remaining Challenges and Barriers
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• Identified potential fuel properties to test for relation to 
combustion properties. This includes supercritical fuel property 
effects.

• Spray tests of single component fuels will be completed to support 
model development

• Based on fuel properties and combustion properties an initial 
model structure will be completed

• Models for single component petroleum based fuels will be created
• Combustion properties that change non-linearly will be identified 

for more complex modeling development
• Model will be developed for predicting non-linear properties for 

fuel blends
• Blended fuels property models validated with acceptable accuracy



Proposed Future Research
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• Conduct preliminary and baseline experiments in the 
modified CPFR

• Conduct parametric experimental study

• Evaluate the proposed EE approach with real-fluid model 
using an open source CFD code

• Evaluate the proposed EE approach with real-fluid model 
using a commercial CFD code

• Integrate the developed models into a commercial CFD 
code and perform validation and demonstration studies

• Document and disseminate validated source codes



Summary
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Relevance
• This project will acquire 

experimental data, and develop 
property models to accuracy model 
fuel-air mixing at supercritical 
conditions for diesel application 
using open source and commercial 
CFD  codes

Approach
• Innovative rainbow schlieren

deflectometry optical diagnostics 
technique is used to acquire 
quantitative data in a constant 
pressure flow rig

• Detailed models to calculate 
thermodynamic properties are 
developed and implemented in CFD 
software, and validated.

Technical Accomplishments
• Developed and validated fluid 

property models using NIST database
• Identified test case, and coordinated 

to implement property models in CFD 
code

• Designed and constructed a constant 
pressure flow rig

• Implemented and validated schlieren
diagnostics techniques

Future Work
• Implement property models in CFD 

software
• Acquire test data in the flow rig
• Compare experimental and model 

results to resolve any discrepancies
• Conduct parametric analysis



Collaboration and Coordination
• This projects builds on expertise in high speed diagnostics and 

experimental capabilities at The University of Alabama.
• UA is providing expertise in two areas:

– Experimentation and optical diagnostics in a constant pressure flow rig
– Neural network models to predict combustion properties

• As part of Co-optima project we partner with Sandia National Lab.
– Partnership with Chuck Mueller to enable fuel selection and coordinate 

experiments activities.
– We consult with both Chuck Mueller and Lyle Pickett to ensure safe and reliable 

operation of the test chamber. 
– Engagement with ECN 

• Additional collaboration with Sibendu Som (Argonne) to support 
prediction and validation of computational fluid dynamics models. 

• UA Investigators hold weekly meetings with students to guide their 
efforts and work directly with students to ensure rigorous treatment of 
all aspects of the project.

36/32



Remaining Challenges and Barriers
• Identify potential fuels and fuel properties for experiments. 
• Determine key combustion properties based on experiments
• Conduct experiments over a range of test conditions
• Develop reliable neural network model structure and models 

for
– single component fuels
– Multi-component fuels

• Blended fuels property models validated with acceptable 
accuracy would be a challenge
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Proposed Future Research
• Conduct preliminary and baseline experiments using the 

three diagnostics techniques simultaneously. 
• Post-process experimental results to obtain combustion 

properties of relevance for single component fuels (both 
petroleum- and bio-based fuels).

• Develop neural network models to relate fuel and combustion 
properties.

• Conduct experiments to obtain combustion properties for 
multi-component fuels.

• Extend and validate neural network models for multi-
component fuels.

• Disseminate experimental results and models.
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Summary
Relevance
• This project will provide experimental data, 

and develop combustion property 
prediction models to support larger Co-
Optima effort of targeting fuels that 
promote specific combustion relevant 
outcomes (i.e. low soot, etc.)

Approach
• Rainbow schlieren deflectometry (RSD), 

two-color pyrometry, and OH* 
chemiluminescence optical diagnostics 
techniques are used with high temporal 
resolution to acquire quantitative mixing, 
ignition, and soot measurements in a 
constant pressure flow rig (CPFR)

• Neural Network (NN) models are used to 
predict combustion properties for different 
fuels, injection, and ambient conditions.
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Technical Accomplishments
• Acquired RSD measurements in a reacting 

fuel spray at diesel conditions.
• Developed a two-color (2C) pyrometer 

system and calibration methods.
• Integrated RSD, OH* chemiluminescence, 

and two-color pyrometer for 
simultaneous image acquisition.

• Developed proof of concept for NN 
models to predict liquid length using ECN 
database.

Future Work
• Complete baseline testing and synchronous 

image acquisition with 3 diagnostics 
techniques using CPFR.

• Formalize data aggregation methods.
• Complete parametric fuels testing
• Complete model development



Technical Backup Slides
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Time Averaging
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Average transverse deflection angle is related to average refractive index 
gradient

𝜀𝜀 𝑥𝑥, 𝑡𝑡 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦, 𝑡𝑡 𝑑𝑑𝑑𝑑

𝜀𝜀 𝑥𝑥, 𝑡𝑡 = ̅𝜀𝜀(𝑥𝑥) + 𝜀𝜀𝜀 𝑥𝑥, 𝑡𝑡

𝛿𝛿 𝑥𝑥,𝑦𝑦, 𝑡𝑡 = ̅𝛿𝛿(𝑥𝑥, 𝑦𝑦) + 𝛿𝛿𝛿 𝑥𝑥,𝑦𝑦, 𝑡𝑡

̅𝜀𝜀(𝑥𝑥) + 𝜀𝜀′(𝑥𝑥, 𝑡𝑡) = �
𝜕𝜕
𝜕𝜕𝜕𝜕

̅𝛿𝛿(𝑥𝑥,𝑦𝑦) + 𝛿𝛿′(𝑥𝑥,𝑦𝑦, 𝑡𝑡 𝑑𝑑𝑑𝑑

̅𝜀𝜀(𝑥𝑥) + 𝜀𝜀′(𝑥𝑥, 𝑡𝑡) = �
𝜕𝜕
𝜕𝜕𝜕𝜕

̅𝛿𝛿(𝑥𝑥,𝑦𝑦) + 𝛿𝛿′(𝑥𝑥,𝑦𝑦, 𝑡𝑡 𝑑𝑑𝑑𝑑

𝜀𝜀𝜀 𝑥𝑥, 𝑡𝑡 = 0 𝛿𝛿𝛿 𝑥𝑥,𝑦𝑦, 𝑡𝑡 = 0

̅𝜀𝜀(𝑥𝑥) = �
𝜕𝜕
𝜕𝜕𝜕𝜕

̅𝛿𝛿(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑



Determination of Local Properties
Starting with

̅𝜀𝜀(𝑥𝑥) = �
𝜕𝜕
𝜕𝜕𝜕𝜕

̅𝛿𝛿(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑

and, after conversion to radial 
coordinates and Abel inversion gives a 
solution for ̅𝛿𝛿 as

̅𝛿𝛿 𝑟𝑟 =
−1
𝜋𝜋
�
𝑟𝑟

𝑅𝑅
̅𝜀𝜀(𝑥𝑥)

𝑑𝑑𝑑𝑑
𝑥𝑥2 − 𝑟𝑟2

which can be discretized to

̅𝛿𝛿 𝑟𝑟𝑖𝑖 = �𝐷𝐷𝑖𝑖𝑖𝑖 ̅𝜀𝜀𝑗𝑗
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For a mixture of gases (vapor region), 
refractive index is sum of the product of all 
species Gladstone-Dale constant and 
partial density.

𝑛𝑛 = 𝑛𝑛𝑜𝑜 𝛿𝛿 + 1 = �
𝑖𝑖

𝜅𝜅𝑖𝑖𝜌𝜌𝑖𝑖 = 𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+𝜅𝜅𝑓𝑓𝜌𝜌𝑓𝑓

• Mixture refractive index is a unique 
function of mixture fraction and 
temperature 

• Determined based on a simple adiabatic 
mixing (no chemistry) model.

Xf, Tf

Xair, Tair

Tmix, nmix

Constant 
Pressure
Adiabatic 

Mixing



Determination of Local Properties
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• An indication of mixture ignitability 
is considered from simple PSR 
simulations at pairs of φ,Tmix.

• For a measured refractive index 
difference, corresponding local 
properties are interpolated.

• Uncertainties currently based on 
simplified propagation of image hue 
to refractive index



Results at 0.7ms aSOI
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